Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Mycopathologia ; 189(3): 43, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709328

RESUMO

During an epidemiological survey, a potential novel species within the basidiomycetous yeast genus Trichosporon was observed. The clinical strain was obtained from a urine sample taken from a Brazilian kidney transplant recipient. The strain was molecularly identified using the intergenic spacer (IGS1) ribosomal DNA locus and a subsequent phylogenetic analysis showed that multiple strains that were previously reported by other studies shared an identical IGS1-genotype most closely related to that of Trichosporon inkin. However, none of these studies provided an in-depth characterization of the involved strains to describe it as a new taxon. Here, we present the novel clinically relevant yeast for which we propose the name Trichosporon austroamericanum sp. nov. (holotype CBS H-24937). T. austroamericanum can be distinguished from other siblings in the genus Trichosporon using morphological, physiological, and phylogenetic characters.


Assuntos
DNA Fúngico , DNA Espaçador Ribossômico , Filogenia , Análise de Sequência de DNA , Transplantados , Trichosporon , Tricosporonose , Trichosporon/classificação , Trichosporon/genética , Trichosporon/isolamento & purificação , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Fúngico/genética , Humanos , Brasil , Tricosporonose/microbiologia , Análise por Conglomerados , Técnicas de Tipagem Micológica , Transplante de Rim , Microscopia , Genótipo
3.
Diagn Microbiol Infect Dis ; 107(3): 116057, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659120

RESUMO

Trichosporon asahii is an emerging opportunistic fungus that mainly causes fatal disseminated trichosporonosis, especially in immunocompromised patients. T. asahii infection has been reported in Thailand, but few studies of this fungus have been published. Therefore, this study investigated the genetic diversity of 51 clinical strains of T. asahii from urine samples in Thailand. We sequenced and characterized the beta-1-tubulin (TUB1), copper-exporting ATPase (ATP), phosphate carrier protein (PHCP), and topoisomerase-1 (TOP1) genes. In addition, intergenic spacer 1 (IGS1) sequences from our previous studies were investigated. The numbers of haplotypes were 3, 3, 2, 2, and 2 for IGS1, TUB1, ATP, PHCP, and TOP1, respectively. The results suggested a relatively low level of genetic diversity among the strains. The findings illustrated that IGS1, TUB1, ATP, PHCP, and TOP1 can be collectively used as an alternative molecular typing tool for investigating the population diversity and structure of T. asahii.


Assuntos
Trichosporon , Tricosporonose , Humanos , Trichosporon/genética , Genótipo , DNA Fúngico/genética , Tricosporonose/microbiologia , Trifosfato de Adenosina , Antifúngicos/farmacologia
4.
Indian J Med Microbiol ; 45: 100390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37573054

RESUMO

OBJECTIVES: Molecular genotyping of Trichosporon species using intergenic spacer region (IGS-1) sequencing and antifungal drug susceptibility testing of T. asahii clinical isolates from Indian patients. MATERIALS AND METHODS: Fifty-five Trichosporon strains were characterized using IGS-1 sequencing from 2006 to 2018 and tested against 5 antifungals using CLSI M27-A3 guidelines. RESULTS: In this study, broad-spectrum antibiotics with steroids, catheters, and ICU stays were major underlying risk factors. These cases were most commonly associated with diabetes (type-2), chronic obstructive pulmonary disease, and hypertension. Out of fifty-five isolates, 47 (85%) were identified as T. asahii, and the remaining 6 were T. inkin (11%) and 2 were Cutaneotrichosporon dermatis (3.6%). The most common genotype of T. asahii was G3 (22; 49%) subsequently G4 (12; 23%), G1 (8; 17%), and G7 (2; 4%). One new genotype of T asahii was found in addition to the fifteen already known genotypes. Indian T. asahii isolates showed a low level of amphotericin B (range 0.06-4 â€‹mg/l) resistance but relatively higher in fluconazole (range 0.25-64 â€‹mg/l). Although, comparatively low MIC ranges were found in the case of voriconazole (0.03-1 â€‹mg/l), posaconazole (0.06-1 â€‹mg/l) and itraconazole (0.06-1 â€‹mg/l). Voriconazole appeared to be the most active drug in T. asahii isolates. The MICs for all the drugs were comparatively lower in the case of non-Trichosporon asahii strains. CONCLUSION: T. asahii was the most common Trichosporon isolate. Speciation is necessary for optimal antifungal therapy. Voriconazole-based treatment, Steroids, removal of catheters and control of underlying conditions results in positive outcomes.


Assuntos
Mycobacterium tuberculosis , Trichosporon , Tricosporonose , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Trichosporon/genética , Voriconazol/farmacologia , Voriconazol/uso terapêutico , DNA Intergênico/genética , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Esteroides , Tricosporonose/tratamento farmacológico
5.
Int J Mol Sci ; 24(10)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37240199

RESUMO

Trichosporon asahii is an opportunistic pathogen that can cause severe or even fatal infections in patients with low immune function. sPLA2 plays different roles in different fungi and is also related to fungal drug resistance. However, the mechanism underlying its drug resistance to azoles has not yet been reported in T. asahii. Therefore, we investigated the drug resistance of T. asahii PLA2 (TaPLA2) by constructing overexpressing mutant strains (TaPLA2OE). TaPLA2OE was generated by homologous recombination of the recombinant vector pEGFP-N1-TaPLA2, induced by the CMV promoter, with Agrobacterium tumefaciens. The structure of the protein was found to be typical of sPLA2, and it belongs to the phospholipase A2_3 superfamily. TaPLA2OE enhanced antifungal drug resistance by upregulating the expression of effector genes and increasing the number of arthrospores to promote biofilm formation. TaPLA2OE was highly sensitive to sodium dodecyl sulfate and Congo red, indicating impaired cell wall integrity due to downregulation of chitin synthesis or degradation genes, which can indirectly affect fungal resistance. In conclusion, TaPLA2 overexpression enhanced the resistance to azoles of T. asahii by enhancing drug efflux and biofilm formation and upregulating HOG-MAPK pathway genes; therefore, it has promising research prospects.


Assuntos
Azóis , Trichosporon , Humanos , Azóis/farmacologia , Antifúngicos/farmacologia , Trichosporon/genética , Farmacorresistência Fúngica/genética , Biofilmes
6.
Biotechnol J ; 18(8): e2300091, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182226

RESUMO

Accumulation of intracellular lipid bodies in oleaginous yeast cells is highly restricted by their natural intracellular space. Here we show a cellulase mediated adaptive evolution with ultra-centrifugation fractionation of oleaginous yeast Trichosporon cutaneum to obtain the favorable cell structure for lipid accumulation. Cellulase was added to the wheat straw hydrolysate during long-term adaptive evolution for disruption of cell wall integrity of T. cutaneum cells. The cellulase, together with ultracentrifugation force, triggered multiple mutations and transcriptional expression changes of the functional genes associated with cell wall integrity and lipid synthesis metabolism. The fractionated mutant T. cutaneum YY52 demonstrated the heavily weakened cell wall and high lipid accumulation by the super-large expanded spindle cells (two orders of magnitude greater than the parental). A record-high lipid production by T. cutaneum YY52 was achieved (55.4 ± 0.5 g L-1 from wheat straw and 58.4 ± 0.1 g L-1 from corn stover). This study not only obtained an oleaginous yeast strain with industrial application potential for lipid production but also provided a new method for generation of mutant cells with high intracellular metabolite accumulation.


Assuntos
Celulase , Trichosporon , Trichosporon/genética , Trichosporon/metabolismo , Celulase/genética , Celulase/metabolismo , Lipídeos , Mutação
7.
Microbiol Spectr ; 11(3): e0424222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102973

RESUMO

Fungal dimorphism involves two morphologies: a unicellular yeast cell and a multicellular hyphal form. Invasion of hyphae into human cells causes severe opportunistic infections. The transition between yeast and hyphal forms is associated with the virulence of fungi; however, the mechanism is poorly understood. Therefore, we aimed to identify factors that induce hyphal growth of Trichosporon asahii, a dimorphic basidiomycete that causes trichosporonosis. T. asahii showed poor growth and formed small cells containing large lipid droplets and fragmented mitochondria when cultivated for 16 h in a nutrient-deficient liquid medium. However, these phenotypes were suppressed via the addition of yeast nitrogen base. When T. asahii cells were cultivated in the presence of different compounds present in the yeast nitrogen base, we found that magnesium sulfate was a key factor for inducing cell elongation, and its addition dramatically restored hyphal growth in T. asahii. In T. asahii hyphae, vacuoles were enlarged, the size of lipid droplets was decreased, and mitochondria were distributed throughout the cell cytoplasm and adjacent to the cell walls. Additionally, hyphal growth was disrupted due to treatment with an actin inhibitor. The actin inhibitor latrunculin A disrupted the mitochondrial distribution even in hyphal cells. Furthermore, magnesium sulfate treatment accelerated hyphal growth in T. asahii for 72 h when the cells were cultivated in a nutrient-deficient liquid medium. Collectively, our results suggest that an increase in magnesium levels triggers the transition from the yeast to hyphal form in T. asahii. These findings will support studies on the pathogenesis of fungi and aid in developing treatments. IMPORTANCE Understanding the mechanism underlying fungal dimorphism is crucial to discern its invasion into human cells. Invasion is caused by the hyphal form rather than the yeast form; therefore, it is important to understand the mechanism of transition from the yeast to hyphal form. To study the transition mechanism, we utilized Trichosporon asahii, a dimorphic basidiomycete that causes severe trichosporonosis since there are fewer studies on T. asahii than on ascomycetes. This study suggests that an increase in Mg2+, the most abundant mineral in living cells, triggers growth of filamentous hyphae and increases the distribution of mitochondria throughout the cell cytoplasm and adjacent to the cell walls in T. asahii. Understanding the mechanism of hyphal growth triggered by Mg2+ increase will provide a model system to explore fungal pathogenicity in the future.


Assuntos
Basidiomycota , Trichosporon , Tricosporonose , Humanos , Trichosporon/genética , Magnésio , Saccharomyces cerevisiae , Tricosporonose/microbiologia , Sulfato de Magnésio , Actinas , Nitrogênio , Antifúngicos/farmacologia
8.
Mycoses ; 66(6): 467-476, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36680377

RESUMO

BACKGROUND: Trichosporon asahii is an opportunistic pathogenic yeast-like fungus. Phospholipase B1 (PLB1) is an important virulence factor of pathogenic fungi such as Candida albicans and Cryptococcus neoformans, and there are few studies on the role of PLB1 in the pathogenicity of T. asahii. OBJECTIVES: To investigate the role of PLB1 in the pathogenicity of T. asahii. METHODS: A strain with low secretion of PLB1 (4848) was screened, a PLB1 overexpression strain (PLB1OX ) was constructed, and the differences in histopathology, fungal load of organ, survival time of mice, the levels of IL-6, IL-10, TNF-α, and GM-GSF in the serum and organs caused by the two strains were compared. RESULTS: Histopathology showed that spores and hyphae were observed in both groups, and PLB1OX led to more fungal invasion. The fungal loads in the kidney, lung, spleen and liver in the PLB1OX group were significantly higher than those in the 4848 group, and the survival time of mice was significantly lower than that in the 4848 group. The levels of TNF-α in the serum, liver, spleen, lung and kidney of the PLB1OX group were lower than those of the 4848 group, while the level of IL-10 in the serum was higher than that of the 4848 group. CONCLUSIONS: These results suggest that PLB1 can enhance the invasive function of T. asahii and affect the secretion of TNF-α and IL-10 which may affect the host antifungal immune response, providing evidence that PLB1 plays a role in the pathogenic infection of T. asahii.


Assuntos
Interleucina-10 , Trichosporon , Animais , Camundongos , Fosfolipases , Trichosporon/genética , Fator de Necrose Tumoral alfa , Virulência , Lisofosfolipase/metabolismo
9.
Mycoses ; 66(5): 430-440, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36564594

RESUMO

BACKGROUND: The Trichosporonaceae family comprises a large number of basidiomycetes widely distributed in nature. Some of its members, especially Trichosporon asahii, have the ability to cause human infections. This ability is related to a series of virulence factors, which include lytic enzymes production, biofilm formation, resistance to oxidising agents, melanin and glucuronoxylomannan in the cell wall, metabolic plasticity and phenotypic switching. The last two are poorly addressed within human pathogenic Trichosporonaceae. OBJECTIVE: These factors were herein studied to contribute with the knowledge of these emerging pathogens and to uncover mechanisms that would explain the higher frequency of T. asahii in human infections. METHODS: We included 79 clinical isolates phenotypically identified as Trichosporon spp. and performed their molecular identification. Lactate and N-acetyl glucosamine were the carbon sources of metabolic plasticity studies. Morphologically altered colonies after subcultures and incubation at 37°C indicated phenotypic switching. RESULTS AND CONCLUSION: The predominant species was T. asahii (n = 65), followed by Trichosporon inkin (n = 4), Apiotrichum montevideense (n = 3), Trichosporon japonicum (n = 2), Trichosporon faecale (n = 2), Cutaneotrichosporon debeurmannianum (n = 1), Trichosporon ovoides (n = 1) and Cutaneotrichosporon arboriforme (n = 1). T. asahii isolates had statistically higher growth on lactate and N-acetylglucosamine and on glucose during the first 72 h of culture. T. asahii, T. inkin and T. japonicum isolates were able to perform phenotypic switching. These results expand the virulence knowledge of Trichosporonaceae members and point for a role for metabolic plasticity and phenotypic switching on the trichosporonosis pathogenesis.


Assuntos
Basidiomycota , Trichosporon , Tricosporonose , Humanos , Antifúngicos , Trichosporon/genética , Virulência , Adaptação Fisiológica , Lactatos
10.
J Clin Lab Anal ; 36(12): e24785, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36441618

RESUMO

BACKGROUND: Diabetic foot infection is the most common complications of diabetes mellitus. Although most of the diabetic foot infections has been known to be caused by aerobic and anaerobic bacteria, mycotic diabetic foot infection caused by Candida species has also been reported recently. Here, we present the first case of diabetic foot infection caused by Cutaneotrichosporon debeurmannianum (previously known as Trichosporon debeurmannianum). METHODS: A 68-year-old diabetic male patient was admitted for management of the necrosis of the big toe. Wound swab culture was performed three times, and each time after 5 days of incubation, beige-colored, wrinkled, and rough colonies were observed on chocolate agar plate. RESULTS: The isolate was identified as C. debeurmannianum with the matrix-assisted laser desorption ionization-time of flight mass spectrometry system (MicroIDSys, ASTA corp.). For confirmation, the sequencing for ITS1/ITS2 and D1/D2 ribosomal DNA was also performed, and the isolate was confirmed as C. debeurmannianum with 100% identity. The isolate exhibited low minimum inhibitory concentrations (MICs) for azoles and high MICs for all echinocandins. CONCLUSION: Considering that usual incubation time for bacterial culture of open wound specimens is only 48 h, it is important to include the request for fungus culture to detect pathogen in diabetic foot lesion.


Assuntos
Basidiomycota , Doenças Transmissíveis , Diabetes Mellitus , Pé Diabético , Micoses , Trichosporon , Masculino , Humanos , Idoso , Trichosporon/genética , Saccharomyces cerevisiae , Micoses/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
Med Mycol J ; 63(4): 119-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36450564

RESUMO

This review describes the changes in yeast species names in the previous decade. Several yeast species have been reclassified to accommodate the "One fungus=One name" (1F=1N) principle of the Code. As the names of medically important yeasts have also been reviewed and revised, details of the genera Candida, Cryptococcus, Malassezia, and Trichosporon are described in Section 3, along with the history of name changes. Since the phylogenetic positions of Candida species in several clades have not been clarified, revision of this species has not been completed. Among the species that remain unrevised despite their importance in the medical field, we propose the transfer of six Candida species to be reclassified in the Nakaseomyces clade, including Nakaseomyces glabratus and Nakaseomyces nivalensis.


Assuntos
Cryptococcus , Malassezia , Trichosporon , Trichosporon/genética , Malassezia/genética , Cryptococcus/genética , Candida/genética , Filogenia
12.
Antimicrob Agents Chemother ; 66(12): e0110122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36374073

RESUMO

We analyzed a cohort of Trichosporon asahii strains with different MICs of fluconazole and voriconazole and evaluated the presence of ERG11 mutations. ERG11 mutation conferring an amino acid change was found and its resistance potential was evaluated by cloning into Saccharomyces cerevisiae susceptible host strain. Transformants were not resistant to either fluconazole nor voriconazole. Our results suggest that ERG11 variants exist among T. asahii isolates, but are not responsible for resistance phenotypes.


Assuntos
Azóis , Sistema Enzimático do Citocromo P-450 , Trichosporon , Antifúngicos/farmacologia , Azóis/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética , Trichosporon/genética , Voriconazol/farmacologia
13.
Biofouling ; 38(8): 778-785, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210505

RESUMO

Trichosporon asahii and T. inkin are emergent agents of deep-seated and disseminated infections in immunocompromised patients. The present study aimed to investigate the role of extracellular DNA (eDNA) and the enzyme deoxyribonuclease (DNase) on the structure of T. asahii and T. inkin biofilms, as well as to examine their effect on the susceptibility to antifungals. Biofilms reached maturity at 48 h; eDNA concentration in the supernatant increased over time (6 < 24 h < 48h). Exogenous eDNA increased biomass of Trichosporon biofilms at all stages of development, enhanced their tolerance to antifungals and improved their structural complexity. DNase reduced biomass, biovolume and thickness of Trichosporon biofilms, thereby rendering them more susceptibility to voriconazole. The results suggest the relevance of eDNA in the structure and antifungal susceptibility of Trichosporon biofilms and highlight the potential of DNase as adjuvant in biofilm control.


Assuntos
Antifúngicos , Trichosporon , Humanos , Antifúngicos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Trichosporon/genética , DNA , Desoxirribonucleases
14.
Sci Rep ; 12(1): 16126, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167890

RESUMO

Trichosporon asahii is a conditional pathogenic fungus that causes severe and sometimes fatal infections in immunocompromised patients. While calcineurin, an essential component of a calcium-dependent signaling pathway, is known to regulate stress resistance and virulence of some pathogenic fungi, its role in T. asahii has not been investigated. Here, we demonstrated that calcineurin gene-deficient T. asahii mutants are sensitive to high temperature as well as cell-membrane and cell-wall stress, and exhibit decreased hyphal formation and virulence against silkworms. Growth of T. asahii mutants deficient in genes encoding subunits of calcineurin, cna1 and cnb1, was delayed at 40 °C. The cna1 and cnb1 gene-deficient mutants also showed sensitivity to sodium dodecyl sulfate, Congo red, dithiothreitol, and tunicamycin. On the other hand, these mutants exhibited no sensitivity to caffeine, sorbitol, monensin, CaCl2, LiCl, NaCl, amphotericin B, fluconazole, or voriconazole. The ratio of hyphal formation in the cna1 and cnb1 gene-deficient mutants was decreased. Moreover, the virulence of the cna1 and cnb1 gene-deficient mutants against silkworms was attenuated. These phenotypes were restored by re-introducing each respective gene into the gene-deficient mutants. Our findings suggest that calcineurin has a role in regulating the cellular stress response and virulence of T. asahii.


Assuntos
Trichosporon , Anfotericina B , Antifúngicos/farmacologia , Basidiomycota , Cafeína , Calcineurina/genética , Calcineurina/metabolismo , Cálcio , Cloreto de Cálcio , Vermelho Congo , Córnea/anormalidades , Doenças da Córnea , Ditiotreitol , Oftalmopatias Hereditárias , Fluconazol , Monensin , Cloreto de Sódio , Dodecilsulfato de Sódio/farmacologia , Sorbitol , Trichosporon/genética , Tunicamicina , Virulência/genética , Voriconazol
15.
Acta Microbiol Immunol Hung ; 69(3): 247-257, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35976734

RESUMO

The basidiomycetes yeast Trichosporon is widespread in the natural environment, but can cause disease, mainly in immunocompromised patients. However, there have been only few studies about this infection in Thailand. In this study, we characterized 53 Trichosporon spp. isolated from urine samples from patients admitted to a single hospital in Bangkok, Thailand over a one-year period from 2019 to 2020. The strains were identified using colony morphology, microscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and nucleotide sequence analysis of intergenic spacer 1 (IGS1). Fifty-one isolates were Trichosporon asahii, and the remaining isolates were Trichosporon inkin and other Trichosporon species. Three genotypes of IGS1-1, 3, and 7 were observed among T. asahii. The sensitivity of the yeasts to the antifungal drugs amphotericin B, fluconazole, and voriconazole ranged from 0.25 to >16 µg ml-1, 0.5-8 µg ml-1, and 0.01-0.25 µg ml-1, respectively. We investigated biofilm formation by the isolates, and no biofilm production was found in one isolate, low biofilm production in forty-four isolates, and medium biofilm production in six isolates. T. inkin produced biofilms at low levels, and Trichosporon spp. produced biofilms at medium levels. This research increases our understanding of the molecular epidemiology of Trichosporon spp. isolated from one university hospital in Bangkok, Thailand, and reveals their genetic diversity, antifungal susceptibility profiles, and capacity for in vitro biofilm production.


Assuntos
Trichosporon , Tricosporonose , Humanos , Antifúngicos/farmacologia , Trichosporon/genética , Genótipo , Tailândia , Tricosporonose/microbiologia , Testes de Sensibilidade Microbiana , Hospitais
16.
Indian J Med Microbiol ; 40(3): 359-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35738950

RESUMO

PURPOSE: Trichosporon species are emerging human pathogens, accounting for the second most common cause of non-candidal mycosis. Rapid and reliable identification of these agents allows a better understanding of their epidemiology and therapeutic management. The Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) technique has the potential to be precise, fast and cost-effective. However, the precision of identification totally depends upon the type of protein extraction method used and embedded database in the system. Our objectives were to standardize the protein extraction technique and expand the present Bruker database by creating an in-house database and validating it with diverse clinical Trichosporon species of Indian origin. METHODS: Two different protein extraction protocols (on-plate and off-plate) were evaluated. The off-plate protocol was finalized for the identification. MALDI TOF MS with the existing Bruker database was evaluated for its ability to identify a total of 79 intergenic spacer 1 (IGS1) gene sequence confirmed clinical isolates of 5 different Trichosporon species. RESULTS: As outcome, off plate protocol yielded higher accuracy (73% on the species level and 95% on the genus level) than on-plate (25% on the genus level) in terms of log scores. The existing database for Trichosporon species was enriched with 28 sequence confirmed isolates, which improved accuracy from 73% to 100% and were identified up to species level with a log score >2.3. CONCLUSIONS: Used with standardized protein-extraction protocol along with an expanded database, MALDI-TOF MS could be a rapid and reliable approach to identify clinical Trichosporon species routinely in the laboratory.


Assuntos
Micoses , Trichosporon , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Trichosporon/genética
17.
Biotechnol Bioeng ; 119(6): 1509-1521, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35165884

RESUMO

Microbial lipid production from lignocellulose biomass provides an essential option for sustainable and carbon-neutral supply of future aviation fuels, biodiesel, as well as various food and nutrition products. Oleaginous yeast is the major microbial cell factory but its lipid-producing performance is far below the requirements of industrial application. Here we show an ultra-centrifugation fractionation in adaptive evolution (UCF) of Trichosporon cutaneum based on the minor cell density difference. The lightest cells with the maximum intracellular lipid content were isolated by ultra-centrifugation fractionation in the long-term adaptive evolution. Significant changes occurred in the cell morphology with a fragile cell wall wrapping and enlarged intracellular space (two orders of magnitude increase in cell size). Complete and coordinate assimilations of all nonglucose sugars derived from lignocellulose were triggered and fluxed into lipid synthesis. Genome mutations and significant transcriptional regulations of the genes responsible for cell structure were identified and experimentally confirmed. The obtained T. cutaneum MP11 cells achieved a high lipid production of wheat straw, approximately five-fold greater than that of the parental cells. The study provided an effective method for screening the high lipid-containing oleaginous yeast cells as well as the intracellular products accumulating cells in general.


Assuntos
Basidiomycota , Trichosporon , Biomassa , Centrifugação , Lipídeos , Trichosporon/genética
18.
Med Mycol ; 59(11): 1101-1113, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34379780

RESUMO

Fungal respiratory tract colonization is a common finding in patients with hematologic neoplasms due to immunosuppression inherent in the diseases and exacerbated by therapy. This greatly increases the risk of fungal infections of the lungs, which is associated with significant mortality. Therefore, reliable diagnostic methods with rapidly available results are needed to administer adequate antifungal therapy. We have established an improved method for fungal DNA extraction and amplification that allows simultaneous detection of fungal families based on a set of multiplexed real-time PCR reactions (fuPCR). We analyzed respiratory rinses and blood of 94 patients with hematological systemic diseases by fuPCR and compared it with the results of culture and serological diagnostic methods. 40 healthy subjects served as controls. Regarding Candida species, the highest prevalence resulted from microbiological culture of respiratory rinses and from detection of antibodies in blood serum in patients (61 and 47%, respectively) and in the control group (29 and 51%, respectively). Detection of other pathogenic yeasts, such as Cryptococcus and Trichosporon, and molds, such as Fusarium, was only possible in patients by fuPCR from both respiratory rinses and whole blood and serum. These fungal species were found statistically significantly more frequent in respiratory rinses collected from patients after myeloablative therapy for stem cell transplantation compared to samples collected before treatment (P < 0.05i). The results show that fuPCR is a valuable complement to culturing and its inclusion in routine mycological diagnostics might be helpful for early detection of pathophysiologically relevant respiratory colonization for patients with hematologic neoplasms.


We validated a set of PCR reactions (fuPCR) for use in routine diagnostic. In contrast to culture and serological methods, only by fuPCR pathogenic yeasts (Cryptococcus and Trichosporon) and molds (Aspergillus and Fusarium) were detected in respiratory rinses and blood of hematological patients.


Assuntos
Cryptococcus/isolamento & purificação , Fusarium/isolamento & purificação , Neoplasias Hematológicas/complicações , Micoses/diagnóstico , Micoses/etiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Trichosporon/isolamento & purificação , Cryptococcus/genética , Técnicas e Procedimentos Diagnósticos , Feminino , Fusarium/genética , Voluntários Saudáveis , Humanos , Masculino , Micoses/genética , Trichosporon/genética
19.
Med Mycol ; 59(12): 1181-1190, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34424343

RESUMO

Trichosporon spp. are widely distributed in the nature, comprising species that inhabit different ecological niches and can be found in the water, soil, and body surface of animals and humans. Such microorganisms have been classically associated with superficial infections; however, in the last decades, they have also been related to disseminated infections in immunocompromised patients, behaving as opportunistic agents, which demands rapid and accurate species identification for efficient therapy. Concordance level between the traditional phenotypic method and the molecular technique (gold standard) in the identification of all 59 Trichosporon samples was 59.3%. Identification concordance between MALDI-TOF spectrometry and the molecular technique was 71.2%. No isolate of environmental origin was identifiable by MALDI-TOF mass spectrometry (MS), and 100% of such environmental isolates were discordant for IGS region sequencing and phenotypic characterization. Both comparisons evidenced greatest concordance in the identification of T. asahii. The species T. debeurmannianum, T. dermatis, T. venhuisii and T. insectorum were not properly identified by both MALDI-TOF MS and the phenotypic technique. MALDI-TOF MS, in particular, seems to be appropriate to investigate yeasts of the genus Trichosporon; however, database updates are still necessary, especially for species that are not common in the clinical routine. With the aim of helping understand the aspects involved in early and accurate diagnosis of infections caused by this opportunistic agent, the present study compared the phenotypic, molecular (IGS region) and mass-spectrometry (MALDI-TOF) identification of 59 yeasts of the genus Trichosporon which had clinical and environmental origin and were kept in a mycology collection.


The present study compared the phenotypic, genotypic, and mass-spectrometry (MALDI-TOF) identification of 59 yeasts of the genus Trichosporon. MALDI-TOF MS, in particular, seems to be appropriate to investigate this yeasts when compared to a molecular technique (gold standard).


Assuntos
Trichosporon , Animais , Proteômica , Saccharomyces cerevisiae , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/veterinária , Trichosporon/genética
20.
Crit Rev Microbiol ; 47(6): 679-698, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34115962

RESUMO

Species of Trichosporon and related genera are widely used in biotechnology and, hence, many species have their genome sequenced. Importantly, yeasts of the genus Trichosporon have been increasingly identified as a cause of life-threatening invasive trichosporonosis (IT) in humans and are associated with an exceptionally high mortality rate. Trichosporon spp. are intrinsically resistant to frontline antifungal agents, which accounts for numerous reports of therapeutic failure when echinocandins are used to treat IT. Moreover, these fungi have low sensitivity to polyenes and azoles and, therefore, are potentially regarded as multidrug-resistant pathogens. However, despite the clinical importance of Trichosporon spp., our understanding of their antifungal resistance mechanisms is quite limited. Furthermore, antifungal susceptibility testing is not standardized, and there is a lack of interpretive epidemiological cut-off values for minimal inhibitory concentrations to distinguish non-wild type Trichosporon isolates. The route of infection remains obscure and detailed clinical and environmental studies are required to determine whether the Trichosporon infections are endogenous or exogenous in nature. Although our knowledge on effective IT treatments is rather limited and future randomized clinical trials are required to identify the best antifungal agent, the current paradigm advocates the use of voriconazole, removal of central venous catheters and recovery from neutropenia.


Assuntos
Trichosporon , Tricosporonose , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Farmacorresistência Fúngica , Equinocandinas , Fungos , Humanos , Testes de Sensibilidade Microbiana , Trichosporon/genética , Tricosporonose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA